本文介绍了称为“文本历史工具”的数字工具的其他方面。我们描述了其各种突出特征,特别参考其特征,可能有助于理智学家在文本上数字化评论和子评论。该工具通过各种时间级捕获文本的历史演进,以及从各种类型的相关文本中剔除的相互关联数据。我们使用k \ = a \'sik \ = avrtti(kv)的文本作为示例文本,并且在照相专家的帮助下,我们将评论数字化为我们提供的评论。我们将NY \ = ASA(NY)数字化,Padama \〜njar \ = i(PM)和子注释称为Tantraprad \ = IPA(TP)和Makaranda(MK)。我们将每次评论和子评论划分为功能单位,并描述了功能单元划分背后的方法和动机。基于使用在工具中输入的数据的距离方法,我们的功能单元部门有助于为文本生成更准确的系统发育树。
translated by 谷歌翻译
快速生产具有纳米分辨率的大面积模式对于已建立的半导体行业和实现下一代量子设备的工业规模生产至关重要。具有二进制全息掩模的亚稳定原子光刻被认为是当前最新水平的较高分辨率/低成本替代方法:极端紫外线(EUV)光刻。然而,最近表明,亚稳定原子与掩模材料(SIN)的相互作用导致波前的强烈扰动,而不是基于经典标量波。这意味着即使在1D中也无法在分析上解决逆问题(基于所需模式创建掩码)。在这里,我们提出了一种机器学习方法,以掩盖产生的目标是亚稳定性原子。我们的算法结合了遗传优化和深度学习来获得面具。一种新型的深神经结构经过训练,可以产生面膜的初始近似。然后,该近似值用于生成可以收敛到任意精度的遗传优化算法的初始种群。我们证明了Fraunhofer近似极限内系统维度的任意1D模式的产生。
translated by 谷歌翻译
基于哈密顿配方的混合机器学习最近已成功证明了简单的机械系统。在这项工作中,我们在简单的质量弹簧系统和更复杂,更现实的系统上强调方法,具有多个内部和外部端口,包括具有多个连接储罐的系统。我们量化各种条件下的性能,并表明施加不同的假设会极大地影响性能,突出该方法的优势和局限性。我们证明,哈米尔顿港神经网络可以扩展到具有州依赖性端口的更高维度。我们考虑学习具有已知和未知外部端口的系统。哈米尔顿港的公式允许检测偏差,并在删除偏差时仍然提供有效的模型。最后,我们提出了一种对称的高级整合方案,以改善稀疏和嘈杂数据的训练。
translated by 谷歌翻译
自治系统正在成为海洋部门内无处不在和获得势头。由于运输的电气化同时发生,自主海洋船只可以降低环境影响,降低成本并提高效率。虽然仍然需要密切的监控以确保安全,但最终目标是完全自主权。一个主要的里程碑是开发一个控制系统,这足以处理任何也稳健和可靠的天气和遇到。此外,控制系统必须遵守防止海上碰撞的国际法规,以便与人类水手进行成功互动。由于Colregs被编写为人类思想来解释,因此它们以暧昧的散文写成,因此不能获得机器可读或可核实。由于这些挑战和各种情况进行了解决,古典模型的方法证明了实现和计算沉重的复杂性。在机器学习(ML)内,深增强学习(DRL)对广泛的应用表现出了很大的潜力。 DRL的无模型和自学特性使其成为自治船只的有希望的候选人。在这项工作中,使用碰撞风险理论将Colregs的子集合在于基于DRL的路径和障碍物避免系统。由此产生的自主代理在训练场景中的训练场景,孤立的遇难情况和基于AIS的真实情景模拟中动态地插值。
translated by 谷歌翻译
由于非线性动力学,执行器约束和耦合的纵向和横向运动,部分地,固定翼无人驾驶飞行器(无人机)的姿态控制是一个困难的控制问题。目前的最先进的自动驾驶仪基于线性控制,因此有限于其有效性和性能。深度加强学习(DRL)是一种通过与受控系统的交互自动发现最佳控制法的机器学习方法,可以处理复杂的非线性动态。我们在本文中展示DRL可以成功学习直接在原始非线性动态上运行的固定翼UAV的态度控制,需要短至三分钟的飞行数据。我们最初在仿真环境中培训我们的模型,然后在飞行测试中部署无人机的学习控制器,向最先进的ArduplaneProportional-Integry-artivation(PID)姿态控制器的表现展示了可比的性能,而无需进一步的在线学习。为了更好地理解学习控制器的操作,我们呈现了对其行为的分析,包括与现有良好调整的PID控制器的比较。
translated by 谷歌翻译
模型预测控制(MPC)越来越多地考虑控制快速系统和嵌入式应用。然而,MPC对这种系统具有一些重大挑战。其高计算复杂性导致来自控制算法的高功耗,这可能考虑电池供电嵌入式系统中的能量资源的大量份额。必须调整MPC参数,这主要是一个试验和错误过程,这些过程会影响控制器的控制性能,鲁棒性和计算复杂度高度。在本文中,我们提出了一种新颖的框架,其中可以使用加强学习(RL)共同调整控制算法的任何参数,其目的是同时优化控制算法的控制性能和功率使用。我们提出了优化MPCWith RL的元参数的新颖思想,即影响MPCPROBLAB的结构的参数,而不是给定个问题的解决方案。我们的控制算法基于事件触发的MPC,在那里我们学习当应该重新计算MPC时,以及在MPC计算之间应用的双模MPC和线性状态反馈控制法。我们制定了一种新的混合分配政策,并表明,随着联合优化,我们在孤立地优化相同参数时,无法呈现自己的改进。我们展示了我们对倒立摆控制任务的框架,将控制系统的总计算时间减少了36%,同时还通过最佳性能的MPC基线提高了18.4%的控制性能。
translated by 谷歌翻译